Hyper-self-duality of Hamming and Doob graphs

نویسنده

  • Brian Curtin
چکیده

We show that the Doob and Hamming graphs are hyper-self-dual. We then show that although the Doob graphs are formally dual to certain Hamming graphs, they are not hyper-dual to them. We do so by showing that Bose-Mesner subalgebras and Kronecker products of Bose-Mesner algebras inherit hyper-duality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the number of maximum independent sets in Doob graphs

The Doob graph D(m,n) is a distance-regular graph with the same parameters as the Hamming graph H(2m+n, 4). The maximum independent sets in the Doob graphs are analogs of the distance-2 MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in D(m,n) grows as 2(1+o(1)). The main tool for the upper estimation is constructing an injective map fr...

متن کامل

MDS codes in Doob graphs

Аннотация The Doob graph D(m, n), where m > 0, is the direct product of m copies of The Shrikhande graph and n copies of the complete graph K 4 on 4 vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). In this paper we consider MDS codes in Doob graphs with code distance d ≥ 3. We prove that if 2m + n > 6 and 2 < d < 2m + n, th...

متن کامل

Unification of Graph Products and Compatibility with Switching

We define the type of graph products, which enable us to treat many graph products in a unified manner. These unified graph products are shown to be compatible with Godsil–McKay switching. Furthermore, by this compatibility, we show that the Doob graphs can also be obtained from the Hamming graphs by switching.

متن کامل

Distance-2 MDS codes and latin colorings in the Doob graphs

The maximum independent sets in the Doob graphs D(m,n) are analogs of the distance-2 MDS codes in Hamming graphs and of the latin hypercubes. We prove the characterization of these sets stating that every such set is semilinear or reducible. As related objects, we study vertex sets with maximum cut (edge boundary) in D(m,n) and prove some facts on their structure. We show that the considered tw...

متن کامل

Perfect codes in Doob graphs

We study 1-perfect codes in Doob graphsD(m,n). We show that such codes that are linear over GR(4) exist if and only if n = (4γ+δ−1)/3 andm = (4γ+2δ−4γ+δ)/6 for some integers γ ≥ 0 and δ > 0. We also prove necessary conditions on (m,n) for 1-perfect codes that are linear over Z4 (we call such codes additive) to exist in D(m,n) graphs; for some of these parameters, we show the existence of codes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005